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1 An Introduction to Coevoluion

Coevolution, the reciprocal adaptation between interacting populations, is not just a simple generalization
of single-population evolution [20]. Because adaptations in one population alter what is selectively favorable
for the other, coevolution is typified by an inherent feedback between populations [11, 10]. This unique
push and pull of coevolution is responsible for an expanded range of potential evolutionary outcomes
compared to single-population evolution [21]. Indeed, coevolutionary hypotheses are strong contenders for
many of the biggest open questions in evolutionary biology [8].

2 Microbial Coevolution

Coevolutionary hypotheses are starting to be tested in the lab with microbial communities [3]. Microbes
have the major advantage of fast generation times, which allow evolutionary changes to occur on observable
timescales [12]. In addition to their speed, laboratory environments can be manipulated with a level of
control impossible to replicate in the field. Together, these properties make it possible to directly test the
causal relationship between coevolution and broader biological patterns [3].

In addition to the level of environmental control afforded by laboratory populations, synthetic biologists
are now able to rationally engineer microbes that perform novel functions [14]. Thus, synthetic biology
enables experimental coevolutionary biologists to design the biotic interactions between populations of
microbes [2, 17].

3 Computational Coevolution

Even more controllable are computational systems that allow open ended evolution [16]. Both Tierra
and Avida, artificial-life platforms where individual computer programs must self-replicate and compete
for resources, have been used to study fundamental questions in coevolutionary biology [13, 22]. In fact,
the first time Tom Ray ran Tierra he noticed that his populations of programs began to fall victim to
“parasites” that stole costly replication code from their “hosts”; however, they didn’t last long as resistant
organisms evolved and eventually took over [19]. At the same time that Tom Ray was exploring biological
coevolution using computers, others like Daniel Hillis of Thinking Machines were using coevolution as
inspiration for new types of genetic algorithms that solve computational problems better and faster [9, 18].

Hillis implemented a traditional GA to find minimal sorting networks with 16 inputs for a description
of sorting networks). Sorting networks are still a topic of active research in theoretical computer science,
where the optimality of sorting networks has been proven for up to 10 inputs as of 2014 [4]. In 1962,
Bose and Nelson introduced the 16 input sorting network and a 65-step solution that they posited was
the optimal solution[1]. Hillis’s traditional GA performed well, finding a solution to the 16-input network
also requiring only 65 steps. However, when Hillis examined each run carefully, he found that the GA
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was plagued by a classic problem – populations becoming trapped on local optima that would require a
reduction in fitness to escape [9, 7]. In part, these local optima were occurring because many of the test
cases used to evaluate fitness were satisfied after just a few generations. Unfortunately, which test cases
were satisfied depended on what solutions were evolved, so eliminating the “easy” test cases was not an
option. Hillis tried several ways of improving his GA including varying test cases over time as well as
varying them over space in a 2D grid. However, it was when he allowed the test cases to evolve against
the evolving solutions (i.e., to coevolve) that solutions with as few as 61 steps were found [9].

The success of Hillis’s experiments inspired others to implement coevolutionary inspired processes in
genetic algorithms. One of the more striking examples of coevolution being harnessed was in Floreano and
Nolfi’s predator-prey robots that chased each other around a mini battlefield [15]. The researchers outfitted
a predator robot with a simple visual system that was able to see prey robots within a 36◦ field of vision
up to 100 cm away. The prey were only able to detect predators within 1.5 cm, but could outrun them
with a top speed twice that of the predators [5]. Because of the placement of sensors, the prey had a blind
spot which the predators evolved to exploit. Eventually the prey evolved coping strategies such as staying
near the battlefield walls or spinning to avoid leaving the blind spot exposed for too long. Several other
strategies evolved, but the researchers noticed that these behaviors cycled, thus exhibiting Red Queen
dynamics [6]. In an attempt to encourage arms races rather than cycling, Nolfi and Floreano implemented
a hall of fame, where previously high-performing predator or prey robots were saved and used as part of
the fitness evaluations in the future [15].

4 A Proposed Synthesis

The ability to control exactly how selection works in these artificial populations is a feature evolutionary
biologists certainly wish their biological populations possessed. On the other hand, this control means
computer scientists are exploring ways of harnessing coevolution in ways biologists could never have imag-
ined. Is there a role for cross-talk between coevolutionary biology and coevolutionary computation? I
would argue the answer is a resounding yes, especially as synthetic biology continues to open up radically
new ways of testing coevolutionary hypotheses and even controlling coevolution.

At the same time, computational studies of coevolution are sometimes asking questions that biologists
may already understand deeply, or entirely missing the large open questions interesting to biologists. With
this proposed paper, we would expand our review on the relevant work from both empirical and compu-
tational studies of coevolution. We would similarly expand our synthesis and include specific examples of
how biological coevolution could learn from computational systems and vice versa. One example of such
crosstalk is a microbial implementation of Nolfi and Floreano’s hall of fame.
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